Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia
- Authors:
- Spiros A. Vlahopoulos
- Lokman Varisli
- Panagiotis Zoumpourlis
- Demetrios A. Spandidos
- Vassilis Zoumpourlis
-
Affiliations: First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece, Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey, Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece - Published online on: October 30, 2024 https://doi.org/10.3892/ijo.2024.5703
- Article Number: 115
-
Copyright: © Vlahopoulos et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Smith C, Gasparetto M, Jordan C, Pollyea DA and Vasiliou V: The effects of alcohol and aldehyde dehydrogenases on disorders of hematopoiesis. Adv Exp Med Biol. 815:349–359. 2015. View Article : Google Scholar | |
Duan X, Hu H, Wang L and Chen L: Aldehyde dehydrogenase 1 family: A potential molecule target for diseases. Cell Biol Int. May 27–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR and Wang QE: ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci. 356:1230332024. View Article : Google Scholar : PubMed/NCBI | |
Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T and Boldogh I: OGG1 as an epigenetic reader affects NFκB: What this means for cancer. Cancers (Basel). 16:1482023. View Article : Google Scholar | |
Vlahopoulos SA: Divergent processing of cell stress signals as the basis of cancer progression: Licensing NFκB on Chromatin. Int J Mol Sci. 25:86212024. View Article : Google Scholar | |
Carroll C, Manaprasertsak A, Boffelli Castro A, van den Bos H, Spierings DCJ, Wardenaar R, Bukkuri A, Engström N, Baratchart E, Yang M, et al: Drug-resilient Cancer Cell Phenotype Is Acquired via Polyploidization Associated with Early Stress Response Coupled to HIF2α Transcriptional Regulation. Cancer Res Commun. 4:691–705. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fredebohm J, Boettcher M, Eisen C, Gaida MM, Heller A, Keleg S, Tost J, Greulich-Bode KM, Hotz-Wagenblatt A, Lathrop M, et al: Establishment and characterization of a highly tumourigenic and cancer stem cell enriched pancreatic cancer cell line as a well defined model system. PLoS One. 7:e485032012. View Article : Google Scholar : PubMed/NCBI | |
Kaigorodova EV, Kozik AV and Grishchenko MY: Decoding Metastasis: From cell death to fusion in cancer progression. Curr Cancer Drug Targets. Jul 15–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Truskowski K, Amend SR and Pienta KJ: Dormant cancer cells: Programmed quiescence, senescence, or both? Cancer Metastasis Rev. 42:37–47. 2023. View Article : Google Scholar : PubMed/NCBI | |
Park MN: The therapeutic potential of a strategy to prevent acute myeloid leukemia stem cell reprogramming in older patients. Int J Mol Sci. 24:120372023. View Article : Google Scholar : PubMed/NCBI | |
Dancik GM, Varisli L and Vlahopoulos SA: The molecular context of oxidant stress response in cancer establishes ALDH1A1 as a Critical Target: What this means for acute myeloid leukemia. Int J Mol Sci. 24:93722023. View Article : Google Scholar : PubMed/NCBI | |
Shortall K, Djeghader A, Magner E and Soulimane T: Insights into aldehyde dehydrogenase enzymes: A structural perspective. Front Mol Biosci. 8:6595502021. View Article : Google Scholar : PubMed/NCBI | |
Gasparetto M and Smith CA: ALDHs in normal and malignant hematopoietic cells: Potential new avenues for treatment of AML and other blood cancers. Chem Biol Interact. 276:46–51. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y and Zhou Y: ALDH1A1 in Cancers: Bidirectional function, drug resistance, and regulatory mechanism. Front Oncol. 12:9187782022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Huang G, Cai X, Liu Y, Qian B and Li D: Global, regional, and national burden of acute myeloid leukemia, 1990-2021: a systematic analysis for the global burden of disease study 2021. Biomark Res. 12:1012024. View Article : Google Scholar : PubMed/NCBI | |
Magni M, Shammah S, Schiró R, Mellado W, Dalla-Favera R and Gianni AM: Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood. 87:1097–1103. 1996. View Article : Google Scholar : PubMed/NCBI | |
Moreb JS, Maccow C, Schweder M and Hecomovich J: Expression of antisense RNA to aldehyde dehydrogenase class-1 sensitizes tumor cells to 4-hydroperoxycyclophosphamide in vitro. J Pharmacol Exp Ther. 293:390–396. 2000.PubMed/NCBI | |
Smith C, Gasparetto M, Humphries K, Pollyea DA, Vasiliou V and Jordan CT: Aldehyde dehydrogenases in acute myeloid leukemia. Ann N Y Acad Sci. 1310:58–68. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R and Leung AY: Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia. 21:1423–1430. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dancik GM, Voutsas IF and Vlahopoulos S: Aldehyde dehydrogenase enzyme functions in acute leukemia stem cells. Front Biosci (Sch Ed). 14:82022. View Article : Google Scholar | |
Hoang VT, Buss EC, Wang W, Hoffmann I, Raffel S, Zepeda-Moreno A, Baran N, Wuchter P, Eckstein V, Trumpp A, et al: The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients. Int J Cancer. 137:525–536. 2015. View Article : Google Scholar | |
Gasparetto M, Pei S, Minhajuddin M, Khan N, Pollyea DA, Myers JR, Ashton JM, Becker MW, Vasiliou V, Humphries KR, et al: Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica. 102:1054–1065. 2017. View Article : Google Scholar : PubMed/NCBI | |
Batten DJ, Crofts JJ and Chuzhanova N: Towards In Silico identification of genes contributing to similarity of patients' multi-omics profiles: A case study of acute myeloid leukemia. Genes (Basel). 14:17952023. View Article : Google Scholar : PubMed/NCBI | |
Dancik GM, Voutsas IF and Vlahopoulos S: Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep. 49:3321–3331. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dancik GM, Varisli L, Tolan V and Vlahopoulos S: Aldehyde dehydrogenase genes as prospective actionable targets in acute myeloid leukemia. Genes (Basel). 14:18072023. View Article : Google Scholar : PubMed/NCBI | |
Venton G, Pérez-Alea M, Baier C, Fournet G, Quash G, Labiad Y, Martin G, Sanderson F, Poullin P, Suchon P, et al: Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J. 6:e4692016. View Article : Google Scholar : PubMed/NCBI | |
Pei S, Minhajuddin M, Adane B, Khan N, Stevens BM, Mack SC, Lai S, Rich JN, Inguva A, Shannon KM, et al: AMPK/FIS1-Mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell. 23:86–100.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marcucci G, Mrózek K, Radmacher MD, Garzon R and Bloomfield CD: The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 117:1121–1129. 2011. View Article : Google Scholar : | |
Xiang M, Birkbak NJ, Vafaizadeh V, Walker SR, Yeh JE, Liu S, Kroll Y, Boldin M, Taganov K, Groner B, et al: STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-κB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal. 7:ra112014. View Article : Google Scholar | |
Karin M: NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol. 1:a0001412009. View Article : Google Scholar | |
Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, et al: Dynamic aberrant NF-κB spurs tumorigenesis: a new model encompassing the microenvironment. Cytokine Growth Factor Rev. 26:389–403. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jimbu L, Mesaros O, Joldes C, Neaga A, Zaharie L and Zdrenghea M: MicroRNAs associated with a bad prognosis in acute myeloid leukemia and their impact on macrophage polarization. Biomedicines. 12:1212024. View Article : Google Scholar : PubMed/NCBI | |
Wallace JA and O'Connell RM: MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood. 130:1290–1301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boudreau RL, Jiang P, Gilmore BL, Spengler RM, Tirabassi R, Nelson JA, Ross CA, Xing Y and Davidson BL: Transcriptome-wide discovery of microRNA binding sites in human brain. Neuron. 81:294–305. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Lee CR, Rigas NK, Kim RH, Kang MK, Park NH and Shin KH: Human papillomavirus 16 (HPV16) enhances tumor growth and cancer stemness of HPV-negative oral/oropharyngeal squamous cell carcinoma cells via miR-181 regulation. Papillomavirus Res. 1:116–125. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H and Xu L: miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol. 142:77–87. 2016. View Article : Google Scholar | |
Nanbakhsh A, Visentin G, Olive D, Janji B, Mussard E, Dessen P, Meurice G, Zhang Y, Louache F, Bourhis JH and Chouaib S: miR-181a modulates acute myeloid leukemia susceptibility to natural killer cells. Oncoimmunology. 4:e9964752015. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Schwind S, Santhanam R, Eisfeld AK, Chiang CL, Lankenau M, Yu B, Hoellerbauer P, Jin Y, Tarighat SS, et al: Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia. Oncotarget. 7:59273–59286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Seipel K, Messerli C, Wiedemann G, Bacher U and Pabst T: MN1, FOXP1 and hsa-miR-181a-5p as prognostic markers in acute myeloid leukemia patients treated with intensive induction chemotherapy and autologous stem cell transplantation. Leuk Res. 89:1062962020. View Article : Google Scholar : PubMed/NCBI | |
Fletcher D, Brown E, Javadala J, Uysal-Onganer P and Guinn BA: microRNA expression in acute myeloid leukaemia: New targets for therapy? EJHaem. 3:596–608. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gong X, Xu B, Zi L and Chen X: miR-625 reverses multidrug resistance in gastric cancer cells by directly targeting ALDH1A1. Cancer Manag Res. 11:6615–6624. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Wang YY and Jiang P: LncRNA LINC00909 promotes cell proliferation and metastasis in pediatric acute myeloid leukemia via miR-625-mediated modulation of Wnt/β-catenin signaling. Biochem Biophys Res Commun. 527:654–661. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shang Z, Ming X, Wu J and Xiao Y: Downregulation of circ_0012152 inhibits proliferation and induces apoptosis in acute myeloid leukemia cells through the miR-625-5p/SOX12 axis. Hematol Oncol. 39:539–548. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aliabedi B, Mousavi SH, Ebrahimi M, Alizadeh S, Hedayati Asl AA, Mohammad M and Samieyan Dehkordi S: Hsa-miR-625 Upregulation promotes apoptosis in acute myeloid leukemia cell line by targeting integrin-linked kinase pathway. Asian Pac J Cancer Prev. 23:1159–1167. 2022. View Article : Google Scholar : PubMed/NCBI | |
Samieyan Dehkordi S, Mousavi SH, Ebrahimi M, Alizadeh SH, Hedayati Asl AA, Mohammad M and Aliabedi B: Upregulation of hsa-miR-625-5p inhibits invasion of acute myeloid leukemia cancer cells through ILK/AKT Pathway. Cell J. 24:76–84. 2022.PubMed/NCBI | |
Li Q, Yao Y, Eades G, Liu Z, Zhang Y and Zhou Q: Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene. 33:2589–2600. 2014. View Article : Google Scholar : | |
Li H, Bi K, Feng S, Wang Y and Zhu C: MiR-140 Targets lncRNA DNAJC3-AS1 to Suppress Cell Proliferation in Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis. 14:e20220052022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang F, Lu Y, Li Y, Ran H, Yan F and Tian Y: MiR-140 targets lncRNA FAM230B to suppress cell proliferation in acute myeloid leukemia running title: MiR-140 targets FAM230B in AML. Hematology. 27:700–705. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Jin S, Guo R, Wu W, Yang C, Qin Y, Chen Q, He X, Qu J and Yang Z: Histone lysine demethylase KDM5B facilitates proliferation and suppresses apoptosis in human acute myeloid leukemia cells through the miR-140-3p/BCL2 axis. RNA. 30:435–447. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, et al: miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 50(D1): D222–D230. 2022. View Article : Google Scholar | |
Kariuki D, Asam K, Aouizerat BE, Lewis KA, Florez JC and Flowers E: Review of databases for experimentally validated human microRNA-mRNA interactions. Database (Oxford). 2023:baad0142023. View Article : Google Scholar : PubMed/NCBI | |
Kern F, Aparicio-Puerta E, Li Y, Fehlmann T, Kehl T, Wagner V, Ray K, Ludwig N, Lenhof HP, Meese E and Keller A: miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. Nucleic Acids Res. 49(W1): W409–W416. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li Y, Liu N, Gao Y and Li L: MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. BMC Cancer. 17:2922017. View Article : Google Scholar : PubMed/NCBI | |
Barrera-Ramirez J, Lavoie JR, Maganti HB, Stanford WL, Ito C, Sabloff M, Brand M, Rosu-Myles M, Le Y and Allan DS: Micro-RNA profiling of exosomes from marrow-derived mesenchymal stromal cells in patients with acute myeloid leukemia: Implications in Leukemogenesis. Stem Cell Rev Rep. 13:817–825. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Min J, Sui X, Qian Y, Liu Y, Liu Z, Zhou H, Li X and Gong Y: MicroRNA-26a-5p and microRNA-23b-3p up-regulate peroxiredoxin III in acute myeloid leukemia. Leuk Lymphoma. 56:460–471. 2015. View Article : Google Scholar : | |
Gaál Z, Oláh É, Rejtő L, Bálint BL and Csernoch L: Expression Levels of Warburg-Effect Related microRNAs Correlate with each Other and that of Histone Deacetylase Enzymes in Adult Hematological Malignancies with Emphasis on Acute Myeloid Leukemia. Pathol Oncol Res. 23:207–216. 2017. View Article : Google Scholar | |
Sethupathy P, Corda B and Hatzigeorgiou AG: TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA. 12:192–197. 2006. View Article : Google Scholar : | |
Chang L, Zhou G, Soufan O and Xia J: miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 48(W1): W244–W251. 2020. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar | |
Liberati FR, Di Russo S, Barolo L, Peruzzi G, Farina MV, Spizzichino S, Di Fonzo F, Quaglio D, Pisano L, Botta B, et al: Combined Delivery of miR-15/16 through Humanized ferritin nanocages for the treatment of chronic lymphocytic leukemia. Pharmaceutics. 16:4022024. View Article : Google Scholar : PubMed/NCBI | |
Gao SM, Yang J, Chen C, Zhang S, Xing CY, Li H, Wu J and Jiang L: miR-15a/16-1 enhances retinoic acid-mediated differentiation of leukemic cells and is up-regulated by retinoic acid. Leuk Lymphoma. 52:2365–2371. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim KT, Carroll AP, Mashkani B, Cairns MJ, Small D and Scott RJ: MicroRNA-16 is down-regulated in mutated FLT3 expressing murine myeloid FDC-P1 cells and interacts with Pim-1. PLoS One. 7:e445462012. View Article : Google Scholar : PubMed/NCBI | |
Abraham M, Klein S, Bulvik B, Wald H, Weiss ID, Olam D, Weiss L, Beider K, Eizenberg O and Wald O, et al: The CXCR4 inhibitor BL-8040 induces the apoptosis of AML blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-D1 via altered miR-15a/16-1 expression. Leukemia. 31:2336–2346. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abdellateif MS, Hassan NM, Kamel MM and El-Meligui YM: Bone marrow microRNA-34a is a good indicator for response to treatment in acute myeloid leukemia. Oncol Res. 32:577–584. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ma W, Xiao GG, Mao J, Lu Y, Song B, Wang L, Fan S, Fan P, Hou Z, Li J, et al: Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget. 6:10432–10444. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hsieh PL, Liao YW, Hsieh CW, Chen PN and Yu CC: Soy isoflavone genistein impedes cancer stemness and mesenchymal transition in head and neck cancer through activating miR-34a/RTCB Axis. Nutrients. 12:19242020. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Cao X, Cao X, Liu L, Qiu Y, Li X, Zhou L, Ning Y, Ren K and Cao J: Isovitexin Inhibits Stemness and Induces Apoptosis in Hepatocellular Carcinoma SK-Hep-1 Spheroids by Upregulating miR-34a Expression. Anticancer Agents Med Chem. 20:1654–1663. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fuster O, Llop M, Dolz S, García P, Such E, Ibáñez M, Luna I, Gómez I, López M, Cervera J, et al: Adverse prognostic value of MYBL2 overexpression and association with microRNA-30 family in acute myeloid leukemia patients. Leuk Res. 37:1690–1696. 2013. View Article : Google Scholar : PubMed/NCBI | |
Farzadfard E, Kalantari T and Tamaddon G: Serum Expression of Seven MicroRNAs in Chronic Lymphocytic Leukemia Patients. J Blood Med. 11:97–102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shiah SG, Hsiao JR, Chang HJ, Hsu YM, Wu GH, Peng HY, Chou ST, Kuo CC and Chang JY: MiR-30a and miR-379 modulate retinoic acid pathway by targeting DNA methyltransferase 3B in oral cancer. J Biomed Sci. 27:462020. View Article : Google Scholar : PubMed/NCBI | |
Nurwidya F, Takahashi F, Winardi W, Tajima K, Mitsuishi Y, Murakami A, Kobayashi I, Nara T, Hashimoto M, Kato M, et al: Zinc-finger E-box-binding homeobox 1 (ZEB1) plays a crucial role in the maintenance of lung cancer stem cells resistant to gefitinib. Thorac Cancer. 12:1536–1548. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hashida S, Yamamoto H, Shien K, Miyoshi Y, Ohtsuka T, Suzawa K, Watanabe M, Maki Y, Soh J, Asano H, et al: Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib. Cancer Sci. 106:1377–1384. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pyzer AR, Stroopinsky D, Rosenblatt J, Anastasiadou E, Rajabi H, Washington A, Tagde A, Chu JH, Coll M, Jiao AL, et al: MUC1 inhibition leads to decrease in PD-L1 levels via upregulation of miRNAs. Leukemia. 31:2780–2790. 2017. View Article : Google Scholar : PubMed/NCBI | |
Havelange V, Stauffer N, Heaphy CC, Volinia S, Andreeff M, Marcucci G, Croce CM and Garzon R: Functional implications of microRNAs in acute myeloid leukemia by integrating microRNA and messenger RNA expression profiling. Cancer. 117:4696–4706. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thomsen KG, Terp MG, Lund RR, Søkilde R, Elias D, Bak M, Litman T, Beck HC, Lyng MB and Ditzel HJ: miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations. Oncotarget. 6:29224–29239. 2015. View Article : Google Scholar : PubMed/NCBI | |
Metzeler KH, Maharry K, Kohlschmidt J, Volinia S, Mrózek K, Becker H, Nicolet D, Whitman SP, Mendler JH, Schwind S, et al: A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia. Leukemia. 27:2023–2031. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rizzo M, Mariani L, Pitto L, Rainaldi G and Simili M: miR-20a and miR-290, multi-faceted players with a role in tumourigenesis and senescence. J Cell Mol Med. 14:2633–2640. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gerrits A, Walasek MA, Olthof S, Weersing E, Ritsema M, Zwart E, van Os R, Bystrykh LV and de Haan G: Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells. Blood. 119:377–387. 2012. View Article : Google Scholar | |
Li Y, Vecchiarelli-Federico LM, Li YJ, Egan SE, Spaner D, Hough MR and Ben-David Y: The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood. 119:4486–4498. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bousquet M, Harris MH, Zhou B and Lodish HF: MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA. 107:21558–21563. 2010. View Article : Google Scholar : PubMed/NCBI | |
Buettner R, Nguyen LXT, Kumar B, Morales C, Liu C, Chen LS, Pemovska T, Synold TW, Palmer J, Thompson R, et al: 8-chloro-adenosine activity in FLT3-ITD acute myeloid leukemia. J Cell Physiol. 234:16295–16303. 2019. View Article : Google Scholar : PubMed/NCBI | |
Testa U and Pelosi E: MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leuk Lymphoma. 56:1466–1474. 2015. View Article : Google Scholar | |
Xu D, Jiang J, He G, Zhou H and Ji C: miR-143-3p represses leukemia cell proliferation by inhibiting KAT6A expression. Anticancer Drugs. 33:e662–e669. 2022. View Article : Google Scholar | |
Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS and Hirst WJ: Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol. 167:6021–6030. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sun YX, Kong HL, Liu CF, Yu S, Tian T, Ma DX and Ji CY: The imbalanced profile and clinical significance of T helper associated cytokines in bone marrow microenvironment of the patients with acute myeloid leukemia. Hum Immunol. 75:113–118. 2014. View Article : Google Scholar | |
Alhattab DM, Isaioglou I, Alshehri S, Khan ZN, Susapto HH, Li Y, Marghani Y, Alghuneim AA, Díaz-Rúa R, Abdelrahman S, et al: Fabrication of a three-dimensional bone marrow niche-like acute myeloid Leukemia disease model by an automated and controlled process using a robotic multicellular bioprinting system. Biomater Res. 27:1112023. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Minamizaki T, Kohno S, Sotomaru Y, Kitaura Y, Ohba S, Sugiyama T, Aubin JE, Tanimoto K and Yoshiko Y: Overexpression of miR-125b in osteoblasts improves age-related changes in bone mass and quality through suppression of osteoclast formation. Int J Mol Sci. 22:67452021. View Article : Google Scholar : PubMed/NCBI | |
Pais H, Nicolas FE, Soond SM, Swingler TE, Clark IM, Chantry A, Moulton V and Dalmay T: Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA. 16:489–494. 2010. View Article : Google Scholar : PubMed/NCBI | |
Varisli L and Vlahopoulos S: Epithelial-Mesenchymal transition in acute leukemias. Int J Mol Sci. 25:21732024. View Article : Google Scholar : PubMed/NCBI | |
Imodoye SO, Adedokun KA, Muhammed AO, Bello IO, Muhibi MA, Oduola T and Oyenike MA: Understanding the complex milieu of epithelial-mesenchymal transition in cancer metastasis: New insight into the roles of transcription factors. Front Oncol. 11:7628172021. View Article : Google Scholar : PubMed/NCBI | |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kong D, Banerjee S, Ahmad A, Li Y, Wang Z, Sethi S and Sarkar FH: Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One. 5:e124452010. View Article : Google Scholar : PubMed/NCBI | |
Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM, Zent R and Arteaga CL: Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene. 25:3408–3423. 2006. View Article : Google Scholar | |
Gorodetska I, Lukiyanchuk V, Gawin M, Sliusar M, Linge A, Lohaus F, Hölscher T, Kati Erdmann, Fuessel S, Borkowetz A, et al: Blood-based detection of MMP11 as a marker of prostate cancer progression regulated by the ALDH1A1-TGF-β1 signaling mechanism. bioRxiv: https://doi.org/10.1101/2024.07.16.603771. | |
Singh B, Murphy RF, Ding XZ, Roginsky AB, Bell RH and Adrian TE: On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells. Mol Cancer. 6:822007. View Article : Google Scholar : PubMed/NCBI | |
Seyhan AA: Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci. 25:14692024. View Article : Google Scholar : PubMed/NCBI | |
Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, et al: Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 122:1630–1637. 2020. View Article : Google Scholar : PubMed/NCBI | |
Witten L and Slack FJ: miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis. 41:2–7. 2020. View Article : Google Scholar | |
Gallant-Behm CL, Piper J, Lynch JM, Seto AG, Hong SJ, Mustoe TA, Maari C, Pestano LA, Dalby CM, Jackson AL, et al: A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. J Invest Dermatol. 139:1073–1081. 2019. View Article : Google Scholar | |
Chioccioli M, Roy S, Newell R, Sauler M, Ahangari F, Ding S, DeIuliis J, Aurelien N, Montgomery RL and Kaminski N: A lung targeted miR-29 mimic as a therapy for pulmonary fibrosis. EBioMedicine. 85:1043042022. View Article : Google Scholar : PubMed/NCBI | |
Narendra G, Raju B, Verma H and Silakari O: Identification of potential genes associated with ALDH1A1 overexpression and cyclophosphamide resistance in chronic myelogenous leukemia using network analysis. Med Oncol. 38:1232021. View Article : Google Scholar : PubMed/NCBI | |
van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huynh Y, Chrzanowska A, Fulham MJ, Bailey DL, et al: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18:1386–1396. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zanjirband M, Rahgozar S and Aberuyi N: miR-16-5p enhances sensitivity to RG7388 through targeting PPM1D expression (WIP1) in childhood acute lymphoblastic leukemia. Cancer Drug Resist. 6:242–256. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M, Buetow KH, Carroll WL, Chen IM, Devidas M, et al: Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood. 118:3080–3087. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang BJ, Smith JL, Farrar JE, Wang YC, Umeda M, Ries RE, Leonti AR, Crowgey E, Furlan SN, Tarlock K, et al: Integrated stem cell signature and cytomolecular risk determination in pediatric acute myeloid leukemia. Nat Commun. 13:54872022. View Article : Google Scholar : PubMed/NCBI | |
Won Lee G, Thangavelu M, Joung Choi M, Yeong Shin E, Sol Kim H, Seon Baek J, Woon Jeong Y, Eun Song J, Carlomagno C, Miguel Oliveira J, et al: Exosome mediated transfer of miRNA-140 promotes enhanced chondrogenic differentiation of bone marrow stem cells for enhanced cartilage repair and regeneration. J Cell Biochem. 121:3642–3652. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Liu X, Tang Z, Wei X, Dong H, Liu Y, Wu H, Wu Z, Li X, Ma X and Guo Z: Increased BMSC exosomal miR-140-3p alleviates bone degradation and promotes bone restoration by targeting Plxnb1 in diabetic rats. J Nanobiotechnology. 20:972022. View Article : Google Scholar : PubMed/NCBI | |
Rajagopal K, Arjunan P, Marepally S and Madhuri V: Controlled differentiation of mesenchymal stem cells into Hyaline Cartilage in miR-140-Activated Collagen Hydrogel. Cartilage. 13(2_suppl): 571S–581S. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Jia H, Hu A, Liu R, Zeng X and Wang H: Nanoparticles targeting delivery antagomir-483-5p to bone marrow mesenchymal stem cells treat osteoporosis by increasing bone formation. Curr Stem Cell Res Ther. 18:115–126. 2023. View Article : Google Scholar | |
Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim T and Croce CM: MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med. 55:1314–1321. 2023. View Article : Google Scholar : PubMed/NCBI | |
Grillone K, Caridà G, Luciano F, Cordua A, Di Martino MT, Tagliaferri P and Tassone P: A systematic review of non-coding RNA therapeutics in early clinical trials: A new perspective against cancer. J Transl Med. 22:7312024. View Article : Google Scholar : PubMed/NCBI | |
Truong VA, Chang YH, Dang TQ, Tu Y, Tu J, Chang CW, Chang YH, Liu GS and Hu YC: Programmable editing of primary MicroRNA switches stem cell differentiation and improves tissue regeneration. Nat Commun. 15:83582024. View Article : Google Scholar : PubMed/NCBI | |
Wen C, Xu X, Zhang Y, Xia J, Liang Y and Xu L: Bone targeting nanoparticles for the treatment of osteoporosis. Int J Nanomedicine. 19:1363–1383. 2024. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Jiang L, Chen Z and Qi J: A simple nanoplatform of thermo-sensitive liposomes and gold nanorods to treat bone metastasis through improved chemotherapy combined with photothermal therapy. Int J Pharm X. 8:1002822024.PubMed/NCBI | |
Li S, Kang Y and Zeng Y: Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer. 1879:1890332024. View Article : Google Scholar | |
Xu M and Li S: Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett. 574:2163972023. View Article : Google Scholar : PubMed/NCBI | |
de Janon A, Mantalaris A and Panoskaltsis N: Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis. J Immunol. 210:895–904. 2023. View Article : Google Scholar : PubMed/NCBI | |
Herrera-Carrillo E, Liu YP and Berkhout B: Improving miRNA Delivery by Optimizing miRNA expression cassettes in diverse virus vectors. Hum Gene Ther Methods. 28:177–190. 2017. View Article : Google Scholar : PubMed/NCBI | |
Calloni R and Bonatto D: Scaffolds for Artificial miRNA expression in animal cells. Hum Gene Ther Methods. 26:162–174. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lundstrom K: Trans-amplifying RNA hitting new grounds: Gene regulation by microRNA. Mol Ther Nucleic Acids. 35:1021912024. View Article : Google Scholar : PubMed/NCBI | |
Yıldız A, Hasani A, Hempel T, Köhl N, Beicht A, Becker R, Hubich-Rau S, Suchan M, Poleganov MA, Sahin U and Beissert T: Trans-amplifying RNA expressing functional miRNA mediates target gene suppression and simultaneous transgene expression. Mol Ther Nucleic Acids. 35:1021622024. View Article : Google Scholar : PubMed/NCBI | |
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al: Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 38:675–678. 2020. View Article : Google Scholar : PubMed/NCBI |