Exosomal integrins in tumor progression, treatment and clinical prediction (Review)
- Authors:
- Yu-Qing Shen
- Lei Sun
- Shi-Ming Wang
- Xian-Yu Zheng
- Rui Xu
-
Affiliations: College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, P.R. China, Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China - Published online on: November 13, 2024 https://doi.org/10.3892/ijo.2024.5706
- Article Number: 118
-
Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Moreno-Layseca P, Icha J, Hamidi H and Ivaska J: Integrin trafficking in cells and tissues. Nat Cell Biol. 21:122–132. 2019. View Article : Google Scholar : PubMed/NCBI | |
Calderwood DA, Campbell ID and Critchley DR: Talins and kindlins: Partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol. 14:503–517. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grigoryeva ES, Tashireva LA, Savelieva OE, Zavyalova MV, Popova NO, Kuznetsov GA, Andryuhova ES and Perelmuter VM: The association of integrins β3, β4, and αVβ5 on exosomes, CTCs and tumor cells with localization of distant metastasis in breast cancer patients. Int J Mol Sci. 24:29292023. View Article : Google Scholar | |
Liu F, Wu Q, Dong Z and Liu K: Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther. 247:1084582023. View Article : Google Scholar : PubMed/NCBI | |
Mammadova-Bach E, Zigrino P, Brucker C, Bourdon C, Freund M, De Arcangelis A, Abrams SI, Orend G, Gachet C and Mangin PH: Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight. 1:e882452016. View Article : Google Scholar | |
Sun F, Wang J, Sun Q, Li F, Gao H, Xu L, Zhang J, Sun X, Tian Y, Zhao Q, et al: Interleukin-8 promotes integrin β3 upregulation and cell invasion through PI3K/Akt pathway in hepatocellular carcinoma. J Exp Clin Cancer Res. 38:4492019. View Article : Google Scholar | |
Reader CS, Vallath S, Steele CW, Haider S, Brentnall A, Desai A, Moore KM, Jamieson NB, Chang D, Bailey P, et al: The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. J Pathol. 249:332–342. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, Camoin L, Baudelet E, Radwanska A, Beghelli-de la Forest Divonne S, et al: Fibronectin-guided migration of carcinoma collectives. Nat Commun. 8:141052017. View Article : Google Scholar : PubMed/NCBI | |
Hamidi H and Ivaska J: Every step of the way: Integrins in cancer progression and metastasis. Nat Rev Cancer. 18:533–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Raab-Westphal S, Marshall JF and Goodman SL: Integrins as therapeutic targets: Successes and cancers. Cancers (Basel). 9:1102017. View Article : Google Scholar : PubMed/NCBI | |
Hamidi H, Pietilä M and Ivaska J: The complexity of integrins in cancer and new scopes for therapeutic targeting. Br J Cancer. 115:1017–1023. 2016. View Article : Google Scholar : PubMed/NCBI | |
Slack RJ, Macdonald SJF, Roper JA, Jenkins RG and Hatley RJD: Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov. 21:60–78. 2022. View Article : Google Scholar | |
Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R: The biology and function of exosomes in cancer. J Clin Invest. 126:1208–1215. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zhang Y, Gong H, Luo S and Cui Y: The role of exosomes and their applications in cancer. Int J Mol Sci. 22:122042021. View Article : Google Scholar : PubMed/NCBI | |
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP and Mayor S: Integrin mechano-chemical signaling generates plasma membrane nanodomains that promote cell spreading. Cell. 177:1738–1756.e23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Bowler N, Harshyne LA, Craig Hooper D, Krishn SR, Kurtoglu S, Fedele C, Liu Q, Tang HY, Kossenkov AV, et al: Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol. 70:20–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, et al: Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles. 13:e124042024. View Article : Google Scholar : PubMed/NCBI | |
Février B and Raposo G: Exosomes: Endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 16:415–421. 2004. View Article : Google Scholar : PubMed/NCBI | |
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI | |
Doyle L and Wang M: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F and Alahari SK: Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance. Mol Cancer. 18:752019. View Article : Google Scholar : PubMed/NCBI | |
Hurley JH: ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol. 20:4–11. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mathieu M, Martin-Jaular L, Lavieu G and Théry C: Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tricarico C, Clancy J and D'Souza-Schorey C: Biology and biogenesis of shed microvesicles. Small GTPases. 8:220–232. 2017. View Article : Google Scholar : | |
Stuffers S, Sem Wegner C, Stenmark H and Brech A: Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic. 10:925–937. 2009. View Article : Google Scholar : PubMed/NCBI | |
Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, Thomas PC, Raposo G and Marks MS: A novel pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell. 10:343–354. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Fu W, Deng M, Li X, Wu M and Wang Y: The sphingolipids change in exosomes from cancer patients and association between exosome release and sphingolipids level based on a pseudotargeted lipidomics method. Anal Chim Acta. 1305:3425272024. View Article : Google Scholar : PubMed/NCBI | |
Guay C and Regazzi R: Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 19(Suppl 1): S137–S146. 2017. View Article : Google Scholar | |
Quek C and Hill AF: The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun. 483:1178–1186. 2017. View Article : Google Scholar | |
Li Y, Chen ZK, Duan X, Zhang HJ, Xiao BL, Wang KM and Chen G: Targeted inhibition of tumor-derived exosomes as a novel therapeutic option for cancer. Exp Mol Med. 54:1379–1389. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, de Candia P, Minciacchi VR and Di Vizio D: Focus on extracellular vesicles: New frontiers of cell-to-cell communication in cancer. Int J Mol Sci. 17:1752016. View Article : Google Scholar : PubMed/NCBI | |
Whiteside TL: Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 41:245–251. 2013. View Article : Google Scholar : PubMed/NCBI | |
Webber J, Steadman R, Mason MD, Tabi Z and Clayton A: Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70:9621–9630. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rai A, Greening DW, Chen M, Xu R, Ji H and Simpson RJ: Exosomes derived from human primary and metastatic colorectal cancer cells contribute to functional heterogeneity of activated fibroblasts by reprogramming their proteome. Proteomics. 19:e18001482019. View Article : Google Scholar | |
Cueni LN and Detmar M: The lymphatic system in health and disease. Lymphat Res Biol. 6:109–122. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang E, Wang X, Gong Z, Yu M, Wu H and Zhang D: Exosome-mediated metabolic reprogramming: The emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduct Target Ther. 5:2422020. View Article : Google Scholar : PubMed/NCBI | |
Ludwig N and Whiteside TL: Potential roles of tumor-derived exosomes in angiogenesis. Expert Opin Ther Targets. 22:409–417. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Liu DA, Guan L, Myint PK, Chin L, Dang H, Xu Y, Ren J, Li T, Yu Z, et al: Stiff matrix induces exosome secretion to promote tumour growth. Nat Cell Biol. 25:415–424. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hynes RO: The emergence of integrins: A personal and historical perspective. Matrix Biol. 23:333–340. 2004. View Article : Google Scholar : PubMed/NCBI | |
Campbell ID and Humphries MJ: Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 3:a0049942011. View Article : Google Scholar : PubMed/NCBI | |
Takada Y, Ye X and Simon S: The integrins. Genome Biol. 8:2152007. View Article : Google Scholar : PubMed/NCBI | |
Van Der Flier A and Sonnenberg A: Function and interactions of integrins. Cell Tissue Res. 305:285–298. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y and Leftheris K: Insights into protein-ligand interactions in integrin complexes: Advances in structure determinations. J Med Chem. 63:5675–5696. 2020. View Article : Google Scholar : PubMed/NCBI | |
Humphries JD, Byron A and Humphries MJ: Integrin ligands at a glance. J Cell Sci. 119:3901–3903. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun CC, Qu XJ and Gao ZH: Arginine-glycine-aspartate-binding integrins as therapeutic and diagnostic targets. Am J Ther. 23:e198–e207. 2016. View Article : Google Scholar | |
Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G and Chavakis T: Leukocyte integrins: Role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther. 147:123–135. 2015. View Article : Google Scholar | |
Zeltz C and Gullberg D: The integrin-collagen connection-a glue for tissue repair? J Cell Sci. 129:653–664. 2016. View Article : Google Scholar : PubMed/NCBI | |
Aumailley M: The laminin family. Cell Adhes Migr. 7:48–55. 2013. View Article : Google Scholar | |
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q and Cui Y: Targeting integrin pathways: Mechanisms and advances in therapy. Signal Transduct Target Ther. 8:12023. View Article : Google Scholar : PubMed/NCBI | |
Anthis NJ and Campbell ID: The tail of integrin activation. Trends Biochem Sci. 36:191–198. 2011. View Article : Google Scholar : PubMed/NCBI | |
Soe ZY, Park EJ and Shimaoka M: Integrin regulation in immunological and cancerous cells and exosomes. Int J Mol Sci. 22:21932021. View Article : Google Scholar : PubMed/NCBI | |
Shattil SJ, Kim C and Ginsberg MH: The final steps of integrin activation: The end game. Nat Rev Mol Cell Biol. 11:288–300. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ginsberg MH, Partridge A and Shattil SJ: Integrin regulation. Curr Opin Cell Biol. 17:509–516. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ganguly KK, Pal S, Moulik S and Chatterjee A: Integrins and metastasis. Cell Adhes Migr. 7:251–261. 2013. View Article : Google Scholar | |
Zhang L, Qu J, Qi Y, Duan Y, Huang YW, Zhou Z, Li P, Yao J, Huang B, Zhang S and Yu D: EZH2 engages TGFβ signaling to promote breast cancer bone metastasis via integrin β1-FAK activation. Nat Commun. 13:25432022. View Article : Google Scholar | |
Huang L, Wang F, Wang X, Su C, Wu S, Yang C, Luo M, Zhang J and Fu L: M2-like macrophage-derived exosomes facilitate metastasis in non-small-cell lung cancer by delivering integrin αVβ3. MedComm (2020). 4:e1912022. View Article : Google Scholar | |
Hazelbag S, Kenter GG, Gorter A, Dreef EJ, Koopman LA, Violette SM, Weinreb PH and Fleuren GJ: Overexpression of the alpha v beta 6 integrin in cervical squamous cell carcinoma is a prognostic factor for decreased survival. J Pathol. 212:316–324. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cantor DI, Cheruku HR, Nice EC and Baker MS: Integrin αvβ6 sets the stage for colorectal cancer metastasis. Cancer Metastasis Rev. 34:715–734. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li ZH, Zhou Y, Ding YX, Guo QL and Zhao L: Roles of integrin in tumor development and the target inhibitors. Chin J Nat Med. 17:241–251. 2019.PubMed/NCBI | |
Lawrence R, Watters M, Davies CR, Pantel K and Lu YJ: Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol. 20:487–500. 2023. View Article : Google Scholar : PubMed/NCBI | |
Silva R, D'Amico G, Hodivala-Dilke KM and Reynolds LE: Integrins: The keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol. 28:1703–1713. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shimaoka M, Kawamoto E, Gaowa A, Okamoto T and Park EJ: Connexins and integrins in exosomes. Cancers (Basel). 11:1062019. View Article : Google Scholar : PubMed/NCBI | |
Grigoryeva ES, Savelieva OE, Popova NO, Cherdyntseva NV and Perelmuter VM: Do tumor exosome integrins alone determine organotropic metastasis? Mol Biol Rep. 47:8145–8157. 2020. View Article : Google Scholar : PubMed/NCBI | |
Domenis R, Marino M, Cifù A, Scardino G, Curcio F and Fabris M: Circulating exosomes express α4β7 integrin and compete with CD4+ T cells for the binding to Vedolizumab. PLoS One. 15:e02423422020. View Article : Google Scholar | |
Maman S and Witz IP: A history of exploring cancer in context. Nat Rev Cancer. 18:359–376. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Wang LZ, Cheng JT, Lam WST, Ma X, Xiang X, Wong AL, Goh BC, Gong Q, Sethi G and Wang L: Targeting hypoxia-inducible factor-1-mediated metastasis for cancer therapy. Antioxid Redox Signal. 34:1484–1497. 2021. View Article : Google Scholar | |
Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW and Simpson RJ: Extracellular vesicles in cancer-implications for future improvements in cancer care. Nat Rev Clin Oncol. 15:617–638. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li K, Chen Y, Li A, Tan C and Liu X: Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer. 144:1486–1495. 2019. View Article : Google Scholar | |
Roma-Rodrigues C, Mendes R, Baptista PV and Fernandes AR: Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 20:8402019. View Article : Google Scholar : PubMed/NCBI | |
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sung JS, Kang CW, Kang S, Jang Y, Chae YC, Kim BG and Cho NH: ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene. 39:664–676. 2020. View Article : Google Scholar | |
Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, et al: Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 9:1912018. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : | |
Pankov R, Cukierman E, Katz BZ, Matsumoto K, Lin DC, Lin S, Hahn C and Yamada KM: Integrin dynamics and matrix assembly: Tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J Cell Biol. 148:1075–1090. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bachmann M, Kukkurainen S, Hytönen VP and Wehrle-Haller B: Cell adhesion by integrins. Physiol Rev. 99:1655–1699. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yazlovitskaya EM, Viquez OM, Tu T, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, Pozzi A and Zent R: The laminin binding α3 and α6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biol. 77:101–116. 2019. View Article : Google Scholar | |
Somanath PR, Malinin NL and Byzova TV: Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis. 12:177–185. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kanchanawong P and Calderwood DA: Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol. 24:142–161. 2023. View Article : Google Scholar | |
Nieto MA, Huang RYJ, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liao TT and Yang MH: Revisiting epithelial-mesenchymal transition in cancer metastasis: The connection between epithelial plasticity and stemness. Mol Oncol. 11:792–804. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao TT and Yang MH: Hybrid epithelial/mesenchymal state in cancer metastasis: Clinical significance and regulatory mechanisms. Cells. 9:6232020. View Article : Google Scholar : PubMed/NCBI | |
Lu W and Kang Y: Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 49:361–374. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grünert S, Jechlinger M and Beug H: Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 4:657–665. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lambert AW, Pattabiraman DR and Weinberg RA: Emerging biological principles of metastasis. Cell. 168:670–691. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tanabe S, Quader S, Cabral H and Ono R: Interplay of EMT and CSC in cancer and the potential therapeutic strategies. Front Pharmacol. 11:9042020. View Article : Google Scholar : PubMed/NCBI | |
Syn N, Wang L, Sethi G, Thiery JP and Goh BC: Exosome-mediated metastasis: From epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 37:606–617. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yeung KT and Yang J: Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 11:28–39. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mamuya FA and Duncan MK: aV integrins and TGF-β-induced EMT: A circle of regulation. J Cell Mol Med. 16:445–455. 2012. View Article : Google Scholar : | |
Caramel J, Papadogeorgakis E, Hill L, Browne GJ, Richard G, Wierinckx A, Saldanha G, Osborne J, Hutchinson P, Tse G, et al: A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell. 24:466–480. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ji Q, Zhou L, Sui H, Yang L, Wu X, Song Q, Jia R, Li R, Sun J, Wang Z, et al: Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat Commun. 11:12112020. View Article : Google Scholar : PubMed/NCBI | |
Wen S, Hou Y, Fu L, Xi L, Yang D, Zhao M, Qin Y, Sun K, Teng Y and Liu M: Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin β3-p38 MAPK signalling. Cancer Lett. 442:320–332. 2019. View Article : Google Scholar | |
Huang Y, Hong W and Wei X: The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI | |
Hao Q, Wu Y, Wu Y, Wang P and Vadgama JV: Tumor-derived exosomes in tumor-induced immune suppression. Int J Mol Sci. 23:14612022. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Ma X and Yu J: Exosomes and organ-specific metastasis. Mol Ther Methods Clin Dev. 22:133–147. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, Mahadevan KK, Wu CJ, Sugimoto H, Chang CC, et al: Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell. 40:818–834.e9. 2022. View Article : Google Scholar | |
Genduso S, Freytag V, Schetler D, Kirchner L, Schiecke A, Maar H, Wicklein D, Gebauer F, Bröker K, Stürken C, et al: Tumor cell integrin β4 and tumor stroma E-/P-selectin cooperatively regulate tumor growth in vivo. J Hematol Oncol. 16:232023. View Article : Google Scholar | |
Zhang Y, Xie R, Zhang H, Zheng Y, Lin C, Yang L, Huang M, Li M, Song F, Lu L, et al: Integrin β7 inhibits colorectal cancer pathogenesis via maintaining antitumor immunity. Cancer Immunol Res. 9:967–980. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ruan S, Lin M, Zhu Y, Lum LG, Thakur A, Jin R, Shao W, Zhang Y, Hu Y, Huang S, et al: Integrin β4-targeted cancer immunotherapies inhibit tumor growth and decrease metastasis. Cancer Res. 80:771–783. 2020. View Article : Google Scholar | |
Vannini A, Leoni V, Barboni C, Sanapo M, Zaghini A, Malatesta P, Campadelli-Fiume G and Gianni T: αvβ3-integrin regulates PD-L1 expression and is involved in cancer immune evasion. Proc Natl Acad Sci USA. 116:20141–20150. 2019. View Article : Google Scholar | |
Ren D, Zhao J, Sun Y, Li D, Meng Z, Wang B, Fan P, Liu Z, Jin X and Wu H: Overexpressed ITGA2 promotes malignant tumor aggression by up-regulating PD-L1 expression through the activation of the STAT3 signaling pathway. J Exp Clin Cancer Res. 38:4852019. View Article : Google Scholar : PubMed/NCBI | |
Lainé A, Labiad O, Hernandez-Vargas H, This S, Sanlaville A, Léon S, Dalle S, Sheppard D, Travis MA, Paidassi H and Marie JC: Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat Commun. 12:62282021. View Article : Google Scholar | |
Takasaka N, Seed RI, Cormier A, Bondesson AJ, Lou J, Elattma A, Ito S, Yanagisawa H, Hashimoto M, Ma R, et al: Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight. 3:e1225912018. View Article : Google Scholar | |
Balkwill F and Mantovani A: Inflammation and cancer: Back to virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI | |
Myint PK, Park EJ, Gaowa A, Kawamoto E and Shimaoka M: Targeted remodeling of breast cancer and immune cell homing niches by exosomal integrins. Diagn Pathol. 15:382020. View Article : Google Scholar : PubMed/NCBI | |
Lukanidin E and Sleeman JP: Building the niche: The role of the S100 proteins in metastatic growth. Semin Cancer Biol. 22:216–225. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J and Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 13:828–835. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ichikawa M, Williams R, Wang L, Vogl T and Srikrishna G: S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 9:133–148. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishida N, Yano H, Nishida T, Kamura T and Kojiro M: Angiogenesis in cancer. Vasc Health Risk Manag. 2:213–219. 2006. View Article : Google Scholar | |
Sharghi-Namini S, Tan E, Ong LLS, Ge R and Asada HH: Dll4-containing exosomes induce capillary sprout retraction in a 3D microenvironment. Sci Rep. 4:40312014. View Article : Google Scholar : PubMed/NCBI | |
Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT and Zöller M: Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70:1668–1678. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krishn SR, Singh A, Bowler N, Duffy AN, Friedman A, Fedele C, Kurtoglu S, Tripathi SK, Wang K, Hawkins A, et al: Prostate cancer sheds the αvβ3 integrin in vivo through exosomes. Matrix Biol. 77:41–57. 2019. View Article : Google Scholar | |
Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, Oktay MH, Pollard JW, Jones JG and Condeelis JS: Real-time imaging reveals local, transient vascular permeability and tumor cell intravasation stimulated by Tie2Hi macrophage-derived VEGFA. Cancer Discov. 5:932–943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sixt M, Bauer M, Lämmermann T and Fässler R: Beta1 integrins: Zip codes and signaling relay for blood cells. Curr Opin Cell Biol. 18:482–490. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Guo S, Xie Y and Yao Y: The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med. 21:7872023. View Article : Google Scholar | |
Jin H, Su J, Garmy-Susini B, Kleeman J and Varner J: Integrin alpha4beta1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 66:2146–2152. 2006. View Article : Google Scholar : PubMed/NCBI | |
Weis SM: Evaluating integrin function in models of angiogenesis and vascular permeability. Methods Enzymol. 426:505–528. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sobierajska K, Ciszewski WM, Sacewicz-Hofman I and Niewiarowska J: Endothelial cells in the tumor microenvironment. Adv Exp Med Biol. 1234:71–86. 2020. View Article : Google Scholar : PubMed/NCBI | |
Labelle M and Hynes RO: The initial hours of metastasis: The importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2:1091–1099. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Lavotshkin S and Lyden D: The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Semin Cancer Biol. 21:139–146. 2011. View Article : Google Scholar : PubMed/NCBI | |
Coleman RE, Croucher PI, Padhani AR, Clézardin P, Chow E, Fallon M, Guise T, Colangeli S, Capanna R and Costa L: Bone metastases. Nat Rev Dis Primer. 6:832020. View Article : Google Scholar | |
Nguyen DX, Bos PD and Massagué J: Metastasis: From dissemination to organ-specific colonization. Nat Rev Cancer. 9:274–284. 2009. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, et al: Pre-metastatic niches: Organ-specific homes for metastases. Nat Rev Cancer. 17:302–317. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sceneay J, Smyth MJ and Möller A: The pre-metastatic niche: Finding common ground. Cancer Metastasis Rev. 32:449–464. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI | |
Liu Y and Cao X: Characteristics and significance of the pre-metastatic niche. Cancer Cell. 30:668–681. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, et al: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 17:816–826. 2015. View Article : Google Scholar : PubMed/NCBI | |
Desgrosellier JS and Cheresh DA: Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar | |
Fedele C, Singh A, Zerlanko BJ, Iozzo RV and Languino LR: The αvβ6 integrin is transferred intercellularly via exosomes. J Biol Chem. 290:4545–4551. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang X: Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 39:762019. View Article : Google Scholar : PubMed/NCBI | |
Geng X, Chang B and Shan J: Role and correlation of exosomes and integrins in bone metastasis of prostate cancer. Andrologia. 54:e145502022. View Article : Google Scholar : PubMed/NCBI | |
Tang L, Xu M, Zhang L, Qu L and Liu X: Role of αVβ3 in prostate cancer: Metastasis initiator and important therapeutic target. Onco Targets Ther. 13:7411–7422. 2020. View Article : Google Scholar : | |
Chen GY, Cheng JCH, Chen YF, Yang JCH and Hsu FM: Circulating exosomal integrin β3 is associated with intracranial failure and survival in lung cancer patients receiving cranial irradiation for brain metastases: A prospective observational study. Cancers (Basel). 13:3802021. View Article : Google Scholar | |
Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, Van Moorselaar RJA and Jimenez CR: Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles. 2: View Article : Google Scholar : 2013.PubMed/NCBI | |
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N and Fruttero R: Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat. 50:1006822020. View Article : Google Scholar : PubMed/NCBI | |
Sousa D, Lima RT and Vasconcelos MH: Intercellular transfer of cancer drug resistance traits by extracellular vesicles. Trends Mol Med. 21:595–608. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lv MM, Zhu XY, Chen WX, Zhong SL, Hu Q, Ma TF, Zhang J, Chen L, Tang JH and Zhao JH: Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumor Biol. 35:10773–10779. 2014. View Article : Google Scholar | |
Wang B, Zhang Y, Ye M, Wu J, Ma L and Chen H: Cisplatin-resistant MDA-MB-231 cell-derived exosomes increase the resistance of recipient cells in an exosomal miR-423-5p-dependent manner. Curr Drug Metab. 20:804–814. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P and Li Y: Exosomes and breast cancer drug resistance. Cell Death Dis. 11:9872020. View Article : Google Scholar : PubMed/NCBI | |
Martinez VG, O'Neill S, Salimu J, Breslin S, Clayton A, Crown J and O'Driscoll L: Resistance to HER2-targeted anti-cancer drugs is associated with immune evasion in cancer cells and their derived extracellular vesicles. Oncoimmunology. 6:e13625302017. View Article : Google Scholar : PubMed/NCBI | |
Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W and Howell SB: Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 4:1595–1604. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goler-Baron V and Assaraf YG: Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS One. 6:e160072011. View Article : Google Scholar : PubMed/NCBI | |
Mollazadeh S, Sahebkar A, Hadizadeh F, Behravan J and Arabzadeh S: Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci. 214:118–123. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang YH, Gao ZF, Dong GH, Li X, Wu Y, Li G, Wang AL, Li HL and Yin DL: Suppression of αvβ6 downregulates P-glycoprotein and sensitizes multidrug-resistant breast cancer cells to anticancer drugs. Neoplasma. 67:379–388. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lopes-Rodrigues V, Seca H, Sousa D, Sousa E, Lima RT and Vasconcelos MH: The network of P-glycoprotein and microRNAs interactions. Int J Cancer. 135:253–263. 2014. View Article : Google Scholar | |
Damiano JS, Cress AE, Hazlehurst LA, Shtil AA and Dalton WS: Cell adhesion mediated drug resistance (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 93:1658–1667. 1999. View Article : Google Scholar : PubMed/NCBI | |
Seguin L, Desgrosellier JS, Weis SM and Cheresh DA: Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25:234–240. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cooper J and Giancotti FG: Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 35:347–367. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kanda R, Kawahara A, Watari K, Murakami Y, Sonoda K, Maeda M, Fujita H, Kage M, Uramoto H, Costa C, et al: Erlotinib resistance in lung cancer cells mediated by integrin β1/Src/Akt-driven bypass signaling. Cancer Res. 73:6243–6253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Janouskova H, Maglott A, Leger DY, Bossert C, Noulet F, Guerin E, Guenot D, Pinel S, Chastagner P, Plenat F, et al: Integrin α5β1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma. Cancer Res. 72:3463–3470. 2012. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Yao JF, Deng XF, Zheng XD, Jia M, Wang YQ, Huang Y and Zhu JH: 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/PI3K/AKT signaling. J Exp Clin Cancer Res. 37:232018. View Article : Google Scholar | |
Khademi R, Malekzadeh H, Bahrami S, Saki N, Khademi R and Villa-Diaz LG: Regulation and functions of α6-integrin (CD49f) in cancer biology. Cancers (Basel). 15:34662023. View Article : Google Scholar | |
Kawakami K, Fujita Y, Kato T, Mizutani K, Kameyama K, Tsumoto H, Miura Y, Deguchi T and Ito M: Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. Int J Oncol. 47:384–390. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA and Zhou QA: Exosomes-nature's lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano. 16:17802–17846. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, et al: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12:655–664. 2016. View Article : Google Scholar | |
Kobayashi M, Sawada K, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Nakamura K, Kawano M, Kodama M, Hashimoto K and Kimura T: Exploring the potential of engineered exosomes as delivery systems for tumor-suppressor microRNA replacement therapy in ovarian cancer. Biochem Biophys Res Commun. 527:153–161. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cho E, Nam GH, Hong Y, Kim YK, Kim DH, Yang Y and Kim IS: Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. J Controlled Release. 279:326–335. 2018. View Article : Google Scholar | |
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S and Wood MJA: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 29:341–345. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gaurav I, Thakur A, Iyaswamy A, Wang X, Chen X and Yang Z: Factors affecting extracellular vesicles based drug delivery systems. Molecules. 26:15442021. View Article : Google Scholar : PubMed/NCBI | |
Li MY, Liu LZ and Dong M: Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer. 20:222021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Wang H, Fu J, Wu X, Liang XY, Liu XY, Wu X, Cao LL, Xu ZY and Dong M: Microfluidic-based exosome isolation and highly sensitive aptamer exosome membrane protein detection for lung cancer diagnosis. Biosens Bioelectron. 214:1144872022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L and Yu D: Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta Rev Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Xu Z, Peng Y, Wang J and Xiang Y: Integrin β4 as a potential diagnostic and therapeutic tumor marker. Biomolecules. 11:11972021. View Article : Google Scholar | |
Valdembri D and Serini G: The roles of integrins in cancer. Fac Rev. 10:452021. View Article : Google Scholar : PubMed/NCBI | |
Hurwitz SN and Meckes DG Jr: Extracellular vesicle integrins distinguish unique cancers. Proteomes. 7:142019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Wang Z, Liu T, Tang J, Liu Y, Gou T, Chen K, Wang L, Zhang J, Yang Y and Zhang H: Exploring the role of ITGB6: Fibrosis, cancer, and other diseases. Apoptosis. 29:570–585. 2024. View Article : Google Scholar | |
Bandyopadhyay A and Raghavan S: Defining the role of integrin αvβ6 in cancer. Curr Drug Targets. 10:645–652. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hausner SH, DiCara D, Marik J, Marshall JF and Sutcliffe JL: Use of a peptide derived from foot-and-mouth disease virus for the noninvasive imaging of human cancer: Generation and evaluation of 4-[18F]fluorobenzoyl A20FMDV2 for in vivo imaging of integrin alphavbeta6 expression with positron emission tomography. Cancer Res. 67:7833–7840. 2007. View Article : Google Scholar : PubMed/NCBI | |
Su L, Chen Y, Huang C, Wu S, Wang X, Zhao X, Xu Q, Sun R, Kong X, Jiang X, et al: Targeting Src reactivates pyroptosis to reverse chemoresistance in lung and pancreatic cancer models. Sci Transl Med. 15:eabl78952023. View Article : Google Scholar : PubMed/NCBI | |
Chen JR, Zhao JT and Xie ZZ: Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother. 155:1137452022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Gülses A, Purcz N, Weimer J, Wiltfang J and Açil Y: A comparative assessment of the effects of integrin inhibitor cilengitide on primary culture of head and neck squamous cell carcinoma (HNSCC) and HNSCC cell lines. Clin Transl Oncol. 21:1052–1060. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Xiao W, Sun S, Sohrabi A, Liang J and Seidlits SK: Extracellular matrix proteins confer cell adhesion-mediated drug resistance through integrin αv in glioblastoma cells. Front Cell Dev Biol. 9:6165802021. View Article : Google Scholar | |
Ignatiadis M, Sledge GW and Jeffrey SS: Liquid biopsy enters the clinic-implementation issues and future challenges. Nat Rev Clin Oncol. 18:297–312. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO and Skog JK: Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann Oncol. 32:466–477. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bergonzini C, Kroese K, Zweemer AJM and Danen EHJ: Targeting integrins for cancer therapy-disappointments and opportunities. Front Cell Dev Biol. 10:8638502022. View Article : Google Scholar | |
Cox D: How not to discover a drug-integrins. Expert Opin Drug Discov. 16:197–211. 2021. View Article : Google Scholar | |
Tam SH, Sassoli PM, Jordan RE and Nakada MT: Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and alpha(v)beta3 integrins. Circulation. 98:1085–1091. 1998. View Article : Google Scholar : PubMed/NCBI | |
Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, Webb G, McDermott R, Watson W, Crown J and O'Driscoll L: Docetaxel-resistance in prostate cancer: Evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 7:e509992012. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, Zhu Y and Feng J: Exosomes: Decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS One. 9:e895342014. View Article : Google Scholar : PubMed/NCBI | |
Hazlehurst LA, Argilagos RF and Dalton WS: Beta1 integrin mediated adhesion increases Bim protein degradation and contributes to drug resistance in leukaemia cells. Br J Haematol. 136:269–275. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei H, Chen J, Wang S, Fu F, Zhu X, Wu C, Liu Z, Zhong G and Lin J: A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine. 14:8603–8610. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J and Nie G: A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 35:2383–2390. 2014. View Article : Google Scholar | |
Chen K and Chen X: Integrin targeted delivery of chemotherapeutics. Theranostics. 1:189–200. 2011. View Article : Google Scholar : PubMed/NCBI | |
Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M and Buck CA: Integrin distribution in malignant melanoma: Association of the beta 3 subunit with tumor progression. Cancer Res. 50:6757–6764. 1990.PubMed/NCBI | |
Choi H, Choi Y, Yim HY, Mirzaaghasi A, Yoo JK and Choi C: Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regen Med. 18:499–511. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gingras MC, Roussel E, Bruner JM, Branch CD and Moser RP: Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol. 57:143–153. 1995. View Article : Google Scholar : PubMed/NCBI |