Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: Mechanism of activity

JIAHUA JIANG1, ISAAC ELIAZ2 and DANIEL SLIVA1,3,4

1Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, 1800 N Capitol Ave, E504, Indianapolis, IN 46202; 2Amitabha Medical Clinic and Healing Center, 7064 Corline Court, Sebastopol, CA; 3Department of Medicine and 4Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis IN, USA

Received January 17, 2011; Accepted March 2, 2011

DOI: 10.3892/ijo.2011.996

Abstract. Since the use of dietary supplements as alternative treatments or adjuvant therapies in cancer treatment is growing, a scientific verification of their biological activity and the detailed mechanisms of their action are necessary for the acceptance of dietary supplements in conventional cancer treatments. In the present study we have evaluated the anti-cancer effects of dietary supplement ProstaCaid™ (PC) which contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor, Phellinus linteus), saw palmetto berry, pomegranate, pumpkin seed, green tea [40% epigallocatechin-3-gallate (EGCG)], Japanese knotweed (50% resveratrol), extracts of turmeric root (BCM-95®), grape skin, pygeum bark, sarsaparilla root, Scutellaria barbata, eleuthero root, Job's tears, astragalus root, skullcap, dandelion, coptis root, broccoli, and stinging nettle, with purified vitamin C, vitamin D3, selenium, quercetin, citrus bioflavonoid complex, β sitosterolzinc, lycopene, α lipoic acid, boron, berberine and 3,3'-diiodolymethane (DIM). We show that PC treatment resulted in the inhibition of cell proliferation of the highly invasive human hormone refractory (independent) PC-3 prostate cancer cells in a dose- and time-dependent manner with IC50 56.0, 45.6 and 39.0 µg/ml for 24, 48 and 72 h, respectively. DNA-microarray analysis demonstrated that PC inhibits proliferation through the modulation of expression of CCND1, CDK4, CDKN1A, E2F1, MAPK6 and PCNA genes. In addition, PC also suppresses metastatic behavior of PC-3 by the inhibition of cell adhesion, cell migration and cell invasion, which was associated with the down-regulation of expression of CAV1, IGF2, NR2F1, and PLAU genes and suppressed secretion of the urokinase plasminogen activator (uPA) from PC-3 cells. In conclusion, the dietary supplement PC is a promising natural complex with the potency to inhibit invasive human prostate cancer.

Introduction

Prostate cancer is one of the leading causes of cancer-related death in American men due to its unpredictable hormonal independence and highly metastatic nature (1). Prostate cancers usually progress from androgen-dependent to androgen-independent phenotype with highly metastatic properties (2-4). Thus, the metastasis of prostate cancer remains the primary issue in improving prostate cancer patient survival. Moreover, hormone ablation therapy and chemotherapy for advanced stage prostate cancer seem not to offer more benefit in improving patient survival rate (5,6). Therefore, there is an urgent need for the identification of new therapies with anti-cancer effects in highly metastatic prostate cancers. Recent epidemiologic and experimental studies show that natural agents have potential chemopreventive and chemotherapeutic action for prostate cancer. Natural herbal and phytochemical agents are being recognized as an alternative therapy of prostate cancer patients (7,8).

ProstaCaid (PC) is a dietary supplement consisting of a 33-ingredient comprehensive polyherbal and nutrient preparation which inhibits aberrant cell proliferation and induces apoptosis in androgen dependent and independent human and mouse prostate cancer cell lines (9). PC contains mycelium from medicinal mushrooms (Ganoderma lucidum, Coriolus versicolor and Phellinus linteus), which separately demonstrated anti-cancer properties (7,10-12). Ganoderma lucidum (G. lucidum) (Ling Zhi, Reishi) is a popular medicinal mushroom used as a traditional medicine in China, Korea and Japan for more than 2,000 years to prevent or treat different diseases, including cancer (13,14). The anti-cancer properties of G. lucidum have been attributed to the polysaccharides, which are responsible for the modulation of the immune system, or triterpenes, which demonstrate cytotoxic activity against a variety of cancer cells including breast, prostate, lung, colon, sarcoma, hepatoma and leukemia cells (13-15). G. lucidum has been shown to inhibit proliferation by cell cycle arrest at the G2/M phase and induced apoptosis in human prostate cancer cells by down-regulation of transcription factors NF-κB (16), resulting in modulating the expression of NF-κB-regulated Bcl-2 and Bcl-xl. G. lucidum

Correspondence to: Dr Daniel Sliva, Cancer Research Laboratory, Methodist Research Institute, 1800 N Capitol Ave, E504, Indianapolis, IN 46202, USA
E-mail: dsliva@iuhealth.org

Key words: ProstaCaid™, plasminogen activator, prostate cancer
has also demonstrated anti-invasive and anti-angiogenic properties which were mediated by the suppression of secretion of plasminogen activator (uPA), vascular endothelial growth factor (VEGF), and transforming growth factor-β1 (TGF-β1) from prostate cancer cells, respectively (17,18). *Coriolus versicolor* (C. versicolor) (Yunzhi) is a medicinal mushroom traditionally used in Asia to treat cancers as well as improve immunomodulatory activities (19). *C. versicolor* contains biologically active structurally different protein-bound polysaccharide-K (PSK, Krestin) and polysaccharopeptide (PSP), which have been shown to inhibit the proliferation of various cancer cells including prostate cancer cells (12,20,21). In addition to the anti-cancer properties, extracts of *C. versicolor* demonstrated strong immunomodulatory effects such as elevated IL-2, natural killer cell activity and T-cell proliferation (11,22). *In vivo* studies showed that oral administration of *C. versicolor* extract or PSP to nude mice significantly suppressed the growth of inoculated prostate cancer cells (12,20,23,24). Although the detailed mechanisms of action of *C. versicolor* on the growth of cancer cells remains to be addressed, recent studies indicate that PSK and PSP of *C. versicolor* caused cell cycle arrest at the G0/G1 phase, induced apoptosis, and inhibited metastasis of prostate cancer cells (11,12,23,24). *Phellinus linteus* (P. linteus) was mainly used in Asian countries for the treatment of various human malignancies including prostate cancer (7,25). Although the major biologically active components in *P. linteus* are polysaccharides (25), *P. linteus* also contains a polysaccharide-protein complex (PPC) which stimulated the tumoricidal activities of macrophages and natural killer (NK) cells, and induced the proliferation of B cells *in vitro* (26). In addition, *P. linteus* inhibits growth and induces apoptosis of invasive prostate cancer cells *in vitro* (7,10,27,28), and sensitizes advanced prostate cancer cells to apoptosis in a xenograft model of prostate cancer (10).

In addition, some of the natural compounds in PC demonstrated a direct effect on prostate cancer cells. For example, resveratrol is a natural polyphenol present in various plants which have demonstrated anti-inflammatory, anti-oxidant, anti-invasive, and cardioprotective properties (29-32). Previous studies showed that resveratrol inhibited growth and increased apoptosis in prostate cancer cells (33,34) and a dimethyl ester derivative of resveratrol (Pterostibene) also inhibited MMP-9 and α methylacetyl-CoA recombines of prostate cancer cells, two metastatic markers for the invasion and metastasis of prostate cancer cells (35). Vitamin D3 possesses anti-proliferative, anti-invasive, anti-migration, anti-metastasis, and anti-angiogenesis effect on prostate cancer cells (36,37), which are mediated through the arrest of cell cycle and the down-regulation of expression of caveolin and inhibition of MMP-9 activity (38,39). Epigallocatechin-3-gallate (EGCG), a major polyphenolic component in the green tea, induced cell cycle arrest and apoptosis in androgen-dependent and -independent human prostate cancer cell lines (40-43). Moreover, EGCG inhibited MMP-2 and MMP-9 via suppression of activation of mitogen-activated protein kinase (MAPK) and also inhibited inflammation-triggered MMP-2 activation and invasion in a murine TRAMP model of prostate cancer (44,45). The molecular mechanisms responsible for the anti-invasive activity of EGCG were associated with down-regulation of activation of c-Jun and NF-κB signaling (43,45).

In the present study, we evaluated anti-proliferative and anti-invasive properties of a dietary supplement PC on highly invasive human hormone refractory (independent) prostate cancer cells PC-3. Here, we show that PC inhibits PC-3 proliferation and modulates expression of prostate cancer-related biomarker genes. In addition, PC also suppresses invasive behavior of PC-3 cells by the inhibition of cell adhesion, migration and invasion. Our results demonstrate a novel mechanism of action of PC in the inhibition of growth and invasive behavior of prostate cancer cells.

Materials and methods

Cell culture and reagents. The human prostate cancer cell line PC-3 was obtained from ATCC (Manassas, VA, USA). PC-3 cells were maintained in DMEM/F-12 medium containing penicillin (50 U/ml), streptomycin (50 U/ml), and 10% fetal bovine serum (FBS). Medium and supplements came from Invitrogen (Grand Island, NY, USA). FBS was obtained from Hyclone (Logan, UT, USA). ProstaCaid (PC) is a 33-ingredient comprehensive poly-herbal and nutrition preparation containing the following active weight components: *Curcuma longa* root extract complex with enhanced bioavailability (BCM-95®) 20%, quercetin 15%, *Coriolus versicolor*, *Ganoderma lucidum*, *Phellinus linteus* mushroom mycelium blend 10% [Astragalus membranaceus root extract (5:1), Coix lacryma-jobi seed extract (5:1), *Coptis japonica* rhizome extract (10:1), *Eleutherococcus senticosus* root extract (5:1), *Scutellaria baicalensis* root extract (5:1), *Scutellaria barbata* root extract (10:1), *Similax glabra* extract (5:1), *Taraxacum officinale* herb (5:1)] herbal blend 9%, *Urtica dioica* herb extract (5:1) 6%, β sitosterol 6%, *Serenoa repens* berry 5%, *Brassica oleracea* var. italic herb extract (22:1) 4%, *Punica granatum* fruit (40% Ellagic acid) 4%, *Vitis vinifera* fruit skin extract (10:1) 4%, *Vitamin C* 4%, α lipoic acid 3%, 3,3′-diiodylmelanthe (DIM) 3%, *Curcubita pepo* seed 2%, *Prunus africana* bark extract (4:1) 2%, *Camellia sinensis* herb extract (40% EGCG; 95% phenols; 70% catechins) 1.5%, *lycopen 0.6%, Zinc 0.4%, Vitamin D3 0.2%, resveratrol 0.2%, berberine 0.1%, boron 0.06%, selenium 0.004%, was supplied by the EcoNugenics, Inc. (Santa Rosa, CA, USA). PC stock solution was prepared by dissolving PC in dimethyl-sulphoxide (DMSO) at a concentration of 25 mg/ml and stored at 4°C.

Cell proliferation. Cell proliferation was determined by the tetrazolium salt method (MTT method), according to the manufacturer’s instructions (Promega, Madison, WI, USA). Briefly, PC-3 cells were cultured in a 96-well plate and treated with PC (0-80 μg/ml) for 24, 48 and 72 h. At the end of the incubation period, the cells were harvested and absorption was determined with an ELISA plate reader at 570 nm, as previously described (46). Data points represent mean ± SD in the representative experiment of triplicate determinations. Similar results were obtained in two independent experiments.

DNA microarrays. PC-3 cells were treated with PC (0-80 μg/ml) for 24 h and total RNA isolated with RNAeasy (Qiagen, Valencia, CA). This RNA was used for the evaluation of prostate cancer genes with Oligo GEArray® Human Prostate Cancer Biomarkers Microarray according to the manufacturer’s protocol.
Cell adhesion, migration and invasion assays. Cell adhesion was performed with Cytomatrix Adhesion Strips coated with human fibronectin (Chemicon International, Temecula, CA, USA). Briefly, PC-3 cells were treated with PC (0-80 µg/ml) for 24 h, harvested, and counted. Cell adhesion was determined after 1.5 h of incubation at 37°C (46). Cell migration of PC-3 cells treated with PC (0-80 µg/ml) was assessed in Transwell chambers in the Dulbecco's modified Eagle medium: nutrient mixture F-12 (DMEM/F12) medium containing 10% fetal bovine serum (FBS) (46). Invasion of PC-3 cells treated with PC (0-80 µg/ml) was assessed in Transwell chambers coated with 100 µl of Matrigel® (BD Biosciences, Bedford, MA, USA) diluted 1:3 with DMEM/F12, after 24 h of incubation (46).

uPA secretion. DMEM/F12 media from PC-3 cells treated with PC (0-80 µg/ml) for 24 h were collected and concentrated, and the secretion of uPA was detected by Western blot analysis with anti-uPA antibody (Oncogene Research Products, Cambridge, MA, USA), as described (46). Quantification of uPA secretion was performed by measuring optical densities of autoradiograms with HP-Scanjet 5500c and analyzed by UN-SCAN-IT software (Silk Scientific, Orem, UT, USA).

Reverse transcription-polymerase chain reaction (RT-PCR). PC-3 cells were treated with different concentrations of PC (0-80 µg/ml) for 24 h. The total RNA from PC-3 cells was isolated by RNeasy® mini kit (Qiagen, Valencia, CA, USA) according to instruction of manufacture. RT-PCR was performed as previously described (48). Briefly, PCR for CDK4, CNK1A and E2F1 was run for 30 cycles at 95°C for denaturation for 45 sec, 60°C for annealing for 45 sec and 72°C for extension for 1 min. PCR for CAV1 was run for 38 cycles at 95°C for denaturation for 45 sec, 60°C for annealing for 1 min and 72°C for extension for 1 min. The primer sequences for CDK4 were 5'-TGTTGAGGGTTGGGTAGG-3' (sense) and 5'-TGCCACTTGGGGATCAG-3' (antisense); the primer sequences for CNK1A were 5'-CCTGCCCTCATGTGCCCTCT-3' (sense) and 5'-TGGGACCTCACCACCA-3' (antisense); the primer sequences for E2F1 were 5'-GGCGTTCTGCCAGCTTGTT-3' (sense) and 5'-CCCAGGCACACATGGA-3' (antisense); the primer sequences for CAV1 were 5'-CGGCCCTCTGTGCGAAGCC-3' (sense) and 5'-GGCCGTTGGCTGATGAAA-3' (antisense); and the primer sequences for β-actin were 5'-ACGAGTCCGGCCCCCTCCATC-3' (sense) and 5'-GGGGCCAGAAGGCTTCA-3' (antisense). The final RT-PCR products (10 µl) were run on a 1.5% agarose gel containing ethidium bromide and quantified using Imager Fluor Chem HD2 (Cell Biosciences, Santa Clara, CA, USA). The results are presented as the ratio of a specific target gene to β-actin.

Statistical analysis. Data are presented as the means ± SD. Statistical comparison between the control group (0 µg/ml of PC) and groups with different PC doses were carried out using one-way analysis of variance (ANOVA). *P<0.05 was considered to be significant.

Figure 1. Effect of PC on the growth of prostate cancer cells. PC-3 cells were treated with PC (0-80 µg/ml) for 24, 48 and 72 h. (A) Cell proliferation was determined by MTT assay as described in Materials and methods. Data are the means ± SD of triplicate determinations. Similar results were obtained in at least two additional experiments. *P<0.05.

Results and Discussion

Effects of PC on the growth of the highly invasive prostate cancer cells. Chemopreventive and therapeutic studies in Asia have demonstrated the beneficial effects of herbal supplements upon a variety of diseases including cancer (43). Although chemotherapy and hormone therapy demonstrated initial efficacy for metastatic prostate cancer patients, after the long-term anti-androgen treatment, prostate cancer patients lose their responsiveness to treatment and prostate cancers progress to androgen-independent phenotype with highly metastatic properties (2-4). Moreover, some of these chemotherapeutic drugs have undesirable toxic side effects (43,49). Therefore, there is a significant clinical application in the identification of natural complexes demonstrating anti-proliferative and anti-metastatic properties. As recently demonstrated PC suppresses proliferation of a variety of prostate cancer cells and this effect is associated with cycle arrest at G2/M phase and induction of apoptosis (9). However, the effect of PC on invasive behavior of prostate cancer cells was not previously addressed. First, we evaluated if PC inhibits growth of highly invasive androgen independent PC-3 prostate cancer cells. As seen in Fig. 1, the increased concentration of PC (0-80 µg/ml) markedly suppressed proliferation of PC-3 cells in a dose- and time-dependent manner. The IC50 of PC for 24, 48 and 72 h treatment was 56.0, 45.6 and 39.0 µg/ml, respectively. Thus, our results are consistent with the recent report by Yan and Katz (9). Although previous studies with mushroom extracts or isolated components of PC demonstrated anti-proliferative and pro-apoptotic effects in prostate cancer cells, the advantage in the use of complex PC is in the low dose of these isolated components which can be explained by their synergistic or additive effects. For example, resveratrol inhibited proliferation of prostate cancer cells PC-3 at 50 µM corresponding to 11.4 µg/ml (50), vitamin D3 at 100 nM corresponding to 38.5 ng/ml (51), and EGCG at 80 µM corresponding to 36.7 µg/ml (52), whereas the concentration of resveratrol, vitamin D3 and EGCG in PC corresponds to 1.6 µg/mg PC, 2 µg/mg PC, 5.8 µg/mg PC, respectively. Therefore, the final concentration of resveratrol...
corresponds to 128 ng/ml, vitamin D3 to 160 ng/ml, and eGCG to 464 ng/ml at the highest used dose of 80 µg/ml of PC in our experiments.

Effect of PC on the invasive behavior of prostate cancer cells. Tumor invasion and metastasis are multifaceted processes including cell adhesion, proteolytic degradation of tissue barriers, cell migration, invasion, and angiogenesis (43,53). Invasive behavior of prostate cancer cells is associated with their ability to migrate and invade the surround tissues and is mediated through uPA/uPAR complex (43,53,54). To investigate if PC has an inhibitory effect on invasive behavior of

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDKN1A</td>
<td>Cyclin-dependent kinase inhibitor (p21)</td>
<td>3.49</td>
</tr>
<tr>
<td>CAV1</td>
<td>Caveolin 1</td>
<td>0.57</td>
</tr>
<tr>
<td>CCND1</td>
<td>Cyclin D1</td>
<td>0.77</td>
</tr>
<tr>
<td>CDK4</td>
<td>Cyclin-dependent kinase 4</td>
<td>0.83</td>
</tr>
<tr>
<td>E2F1</td>
<td>E2F transcription factor 1</td>
<td>0.54</td>
</tr>
<tr>
<td>ELAC2</td>
<td>ElaC homolog 2 (E. coli)</td>
<td>0.66</td>
</tr>
<tr>
<td>IGF2</td>
<td>Insulin-like growth factor 2</td>
<td>0.62</td>
</tr>
<tr>
<td>MAPK6</td>
<td>Mitogen-activated protein kinase 6</td>
<td>0.54</td>
</tr>
<tr>
<td>NR2F2</td>
<td>Nuclear receptor subfamily2, group F, member 2</td>
<td>0.52</td>
</tr>
<tr>
<td>PCNA</td>
<td>Proliferating cell nuclear antigen</td>
<td>0.47</td>
</tr>
<tr>
<td>PLAU</td>
<td>Plasminogen activator, urokinase</td>
<td>0.35</td>
</tr>
</tbody>
</table>

DNA-microarray analysis was performed with PC-3 cells treated with PC (0-80 µg/ml) for 24 h as described in Materials and methods. The data are representative of two independent experiments.
highly invasive prostate cancer cells, PC-3 cells were pretreated with PC (0-80 µg/ml) for 24 h and their adhesion to fibronectin was determined on strips coated with human fibronectin as described in Materials and methods. As seen in Fig. 2A, adhesion of PC-3 cells to fibronectin was markedly suppressed by the PC treatment by 28.3 and 59.9% at 40 and 80 µg/ml, respectively. The effect of PC on migratory potential of prostate cancer cells was evaluated in PC-3 cells pretreated with PC (0-80 µg/ml) for 1 h and cell migration was determined after additional 24 h of incubation. As expected, PC significantly decreased the migration rate of PC-3 cells by 29.7 and 58.5% at 40 and 80 µg/ml, respectively (Fig. 2B). Cell invasion is another key factor involved in cancer progression and metastasis (3,43,46). To examine the effect of PC on the invasive ability of PC-3 cells, cell invasion assays were performed in Transwell chambers coated with Matrigel as described in Materials and methods. As seen in Fig. 2C, PC markedly inhibited invasion of PC-3 cells in a dose-response manner by 28.3 and 48.7% at 40 and 80 µg/ml, respectively. In order to evaluate the molecular mechanism of action of PC on the invasion of prostate cancer cells, conditioned media from PC-3 cells treated with PC (0-80 µg/ml) were collected and secretion of uPA was determined by Western blot analysis. As expected, PC markedly decreased secretion of uPA from PC-3 cells (Fig. 2D). This observation is consistent with our previous report demonstrating the anti-invasive effect of *G. lucidum* in human prostate cancer cells through the mechanisms including uPA/uPAR signaling (18,46). As in the inhibition of proliferation by PC described above, the concentration of *G. lucidum* in PC was markedly lower (19.5 µg/mg PC which corresponds to the final concentration of *G. lucidum* at 1.56 µg/ml at the highest used dose of 80 µg/ml of PC), than in the original experiments with individual *G. lucidum* extracts (0.5-2.5 mg/ml) (18).

Effect of PC on the gene expression profiles of prostate cancer-related biomarkers in prostate cancer cells. In order to evaluate
whether anti-proliferative and anti-invasive effects of PC are associated with the expression of genes previously identified in prostate cancer, we used cDNA microarray analysis with human prostate cancer biomarker genes. PC-3 cells were treated with PC (0-80 µg/ml) for 24 h and cDNA microarray analysis performed as described in Materials and methods. As seen in Table I, PC up-regulated the expression of CDKN1A, and down-regulated expression of CAV1, CCND1, CDK4, E2F1, ELAC2, IGF2, MAPK6, NR2F2 and PLAU genes in the PC-3 cells. Furthermore, we have confirmed the expression of some genes by RT-PCR. PC-3 cells were treated with PC (80 µg/ml) for 24 h. Total RNA was isolated and RT-PCR analysis was performed. Consistent with the DNA microarray data, PC significantly induced the expression of the CDKN1A mRNA and down-regulated the expression of CDK4 mRNA and CAV1 mRNA (Fig. 3). Interestingly, expression of E2F1 mRNA was not changed by the PC treatment. Therefore, PC regulates the cell cycle progression network through binding to cell cycle regulators such as cyclin D1, Rb, and the transcription factor E2F1 (49,55-58). The cell progression is regulated by cyclins, cyclin dependent kinases (Cdks) and CdK inhibitors such as p15, p16, 21, and p27; cyclin D1 (CCND1) and CDK4 form a complex to accelerate cell cycle progression, while CdK inhibitors slow cell cycle progression (48,55,56,59,60). Therefore, the up-regulation of CDKN1A (p21) and down-regulation of CCND1 and CDK4 genes will cause cell cycle arrest at G1/G0 phase. Up-regulation of p21 induced strong downstream inhibition of CDK4 and cyclin D1 and hypophosphorylation of Rb, further leading to the inhibition of transcription factor E2F1. Nevertheless, p21 can bind to proliferating cell nuclear antigen (product of PCNA gene) (61) and PCNA regulated the expression of ERK3/MAPK6 (product of MAPK6 gene) which affect cell viability and regulate the cell cycle (62). Thus, the induction of p21 also resulted in the inhibition of PCNA expression, leading to the reduction of ERK3 protein. In addition to the cell cycle regulatory genes, PC treatment also modulated expression of other genes previously identified in prostate cancer CAV1, IGF2, ELAC2 and PLAU (Table I). For example, Caveolin-1 (product of CAV1 gene) is a major structural component of caveolae, specialized in plasma membrane invaginations involved in endocytosis, cell adhesion, and signal transduction (63). Further, Caveolin-1 is over-expressed in advanced prostate cancer where it promotes migration, invasion, and angiogenesis in prostate cancer cells (63,64). The precise role of the insulin-like growth factor 2 (IGF2) on progression of tumor remains unclear. However, polypeptide of the IGF2 gene is associated with increased prostate cancer risk (65,66) and an activation of autocrine IGF2 loop is linked to the neoplastic progression (67). uPA (product of PLAU gene) and its receptor (uPAR) are important in cancer adhesion, migration, and invasion. uPA interacts with uPAR, which further form the multi-complex with integrin receptor α,β, or α,β, and regulate the invasive behavior (adhesion, migration and invasion) of cancer cells (18,43,68,69). Although suggested polymorphism of the elac2 homolog-2/heriteditary prostate cancer (ELAC2/HPC2) gene and prostate cancer risk demonstrated conflicting results in a variety of studies, a recent meta-analysis showed that ELAC2 is associated with prostate cancer risk (70,71).

In summary, our data clearly demonstrate that PC modulates expression of specific genes related to prostate cancer growth and invasiveness, and special ingredients in the PC may contribute to the inhibition of prostate cancer cells through distinct signaling pathways.

In conclusion, ProstaCaid is a novel dietary supplement that contains multiple ingredients which show an anti-proliferation effect on androgen-dependent and -independent prostate cancer cells. Our results show that PC inhibits proliferation and invasive behavior of prostate cancer cells by the modulation of the expression of genes associated with prostate cancer. Our data suggest that PC has multiple targets for its therapeutic effect and the biological activity of PC is mediated by the additive or synergistic effects of its individual ingredients. In summary, PC may have potential clinical application for an alternative prostate cancer therapy.

Acknowledgements

This study was supported by a research grant from EcoNugenics, Inc., Santa Rosa, CA. We would like to thank Barry Wilk for his contribution to this study. One of the authors, I. Eliaz, acknowledges his interest as the formulator and owner of EcoNugenics, Inc.

References

